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Abstract 

It is shown that the simplicity of the C*-algebra of quasilocal observables of a 
ttaag field can be deduced from a postulate which seems to be plausible from 
a physical point of view. 

1. Introduction 

A g a a g  field (Misra, 1965) (H, ~), 0 --> R(O)) is defined as follows: 
To every bounded open domain 0 in Minkowski space we associate a 
yon Neumann algebra (Dixmier, 1957) R(O) in a separable Hilbert 
space H. R(O) is generated by the observables (of a given physical 
system) which can be measured in the domain O. 

The algebras R(O) are called algebras of local observables. The union 
of all these algebras 

Q = (2 R(O) 
o 

is a *-algebra, the algebra of all local observables. I f  we complete Q with 
respect to the norm topology we get the C*-algebra ~) of quasilocal 
observables. 

The structure (H, ~), 0 -~ R(O)) is called a Haagfield. 
In a purely algebraic formulation of the quantum theory of fields 

(Haag & Kastler, 1964) the algebras R(O) are considered as abstract 
C*-algebras instead of von Neumann algebras. From the mathe- 
matical point of view it is, however, advantageous to define these 
algebras as sets of operators acting in a Hilbert space. 

Haag & Kastler (1964) have shown that  two representations of the 
algebra ~) of quasilocal observables are physically equivalent (i.e. 
contain the same physical information) if they have the same kernel. 

A stronger definition of physical equivalence was given by Misra 
(1965): Two representations DI(~)) and De(Q) are physically equiva- 
lent in the sense of Misra if they are *-isomorphic and locally unitarily 
equivalent (i.e. DI[R(O)] and D2[R(O)] are unitarily equivalent for 
every bounded open domain 0). 

1" Work supported by the Swiss National Science Foundation. 
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Misra (1965) showed that all faithful representations of ~) are 
physically equivalent in this sense if the local algebras R(O) are 
infinite, and it is well known that the algebras R(O) are indeed of 
infinite type (Guenin & Misra, 1963; Kadison, 1963; Borchers, 1967). 

Hence, if ~) is simple, all its non-trivial representations are physically 
equivalent in the sense of I-Iaag and Kastler as well as in the sense of 
Misra. It is therefore interesting to know whether ~) is simple. Misra 
(1965) has shown that this is the case if the Haag field <H, ~), O -> R(O)> 
has a certain property which he calls 'property E'. Borchers (1967) 
proved that Q is simple if the centre of Q is trivial. 

It is the purpose of this paper to show that the centre of Q is trivial 
and that, therefore, the C*-algebra ~) of quasilocal observables is 
simple, provided the I-Iaag field (H, Q, O -~ R(O)> satisfies the follow- 
ing postulate which seems to be plausible from a physical point of 
view. This postulate, which we refer to as extended locality, states that 
if O1 and O2 are totally space-like to each other then the intersection 
of R(OI) and R(O2) is trivial. 

In the last section we deduce the property F from the fact that the 
centre of Q is trivial. To do this we need, however, rather strong 
assumptions which are not needed in Borchers's proof (Borchers, 1967). 

2. The Postulates 

We denote by 0 a (bounded) open region in Minkowski space and 
by 0 '  the region which is totally space-like relative to 0. 

I f  M is a set of (bounded) operators in a separable Hilbert space H, 
we denote by M'  the commutant  and by M" the bicommutant of M. 
M" is the von Neumann algebra generated by M. 

Let 0--> R(O) be a correspondence between open space-time 
domains 0 and the yon Neumann algebras R(O) of local observables. 
We state the following postulates : 

2.1. Isotony 
01 ~ 02 ~ R(01) ~ R(02) 

2.2. Translation Covariance 
The Hilbert space H in which the algebras R(O) are defined is the 

representation space of a unitary representation of the translation 
group : 

U(x) = f exp (ipx) dE(p) 
and we have 

U(x) R(O) U-~(x) = R(O + x) 
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2.3. Spectrum Condition 

Let  V+ be the  closed forward cone and  E(A) the  spectral  measure  
of  the  t rans la t ion  opera tor  U for a set A in ene rgy -momen tum space. 
The n  

A N F+ = r ~ E [ A ]  = 0 

2.4. Weak Additivity 
Let  0 be an a rb i t r a ry  bounded  open space-t ime domain.  Then  

2.5. Locality 
IY } Q" = R(O + z) 

01 c 02' ~ R(01) c R(02) '  

2.6. Extended Locality 

01  c 0 2 '  =~ R ( 0 1 )  n R(02) = (~. 1} (2.6.1) 

I f  (2.6.1) is no t  t rue  then  there  exists an observable A which belongs 
s imul taneously  to  R(01) and to  R(02). I f  we measure A in 01 we 
know at  the  same t ime its value in 02 wl3ich contradicts  physical  
in tui t ion if  the  two regions are to ta l ly  space-like to  each other,  t 

We  remark  t h a t  there  is a connect ion between ex tended  locali ty and  
str ict  locali ty:  The former  can be deduced f rom the  lat ter .  Str ict  
locali ty is defined as follows (Licht,  1963; Kraus ,  1964): 

Le t  01 and 02 be to ta l ly  space-like to  each other.  Then  for every  
non-tr ivial  projec tor  P e R(01) and for every  vec tor  r e H there  
exists a vec tor  r E PH such t h a t  

(r Ar = (r Ar [V A e R(02)] 

Kraus  (1964) deduced str ict  locali ty f rom some other  postulates  
under  the  addit ional  assumption t ha t  Q" is a factor.  

The postulates  2.1-2.6 are sufficient to show t h a t  ~) is simple. For  
our discussion of  p rope r ty  F we need: however,  some more 
assumptions.  

A stronger form of  weak addi t iv i ty  is 

t The uni t  opera tor  1 plays a special role. Since by  definit ion every  yon  
N e u m a n n  algebra contains a uni t  e lement  we cannot  have  the  e m p t y  set on the  
right-hand side of (2.6.1). We can interpret the unit operator as follows: Since 
1 is a projector it belongs to a yes-no experiment. This experiment answers the 
question: 'Does our physical system exist?' Of course, the existence of this 
system is the most fundamental of our assumptions. 



11O A. SCHOCll 

2.7. Additivity 
R(01 U 0~) = {R(01) U R(02)}" 

This amounts to the statement tha t  the observables which can be 
measured in Oi (J 02 are those which can be measured in O~ plus those 
which can be measured in 02, and no more. 

Next we can write the postulate of isotony in the following way: 

0i  c 02 ~ R(Oi N 02) = R(Oi) N R(02) 

We sharpen this statement by requiring 

2.8. Continuous Isotony (Kraus, 1964) 

01 D 02 D "'" -~ ~ Oi be a monotone decreasing sequence Let o f  

open sets in Minkowski space, and let ~ Oi have a non-empty open 

interior 0 with 0 D 0 0 ~  (6 is the closure of 0). Then $ 

= 0 R(O ) R(O) 

2.9. Primitive Causality 

Let T be an open region in Minkowski space, containing a complete 
space-like hypersurface. Then 

Primitive causality says that  measurements in a finite time interval 
are sufficient to determine the behaviour of a physical system for all 
times. This is always the ease if the system is described by a conven- 
tional field theory based on local fields satisfying hyperbolic equations 
of motion, because in this ease the boundary values on a space-like 
hypersurface are sufficient to determine the evaluation of the system. 

3. The Centre of Q 

From postulates 2.1-2.5 Borchers (1967) proved 

Theorem 3.1 
Let J c ~) be a norm-closed two-sided ideal in Q. Then 

J ~ {0} ~ J N Q A Q '  r {0} 

We want to show now tha t  the centre Q N Q' of Q is trivial. To this 
aim we need 
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Lemma 3.1 

The algebra Q of all local observables does not contain non-triviM 
translation invariant elements. 

Proof: Let A e Q be translation invariant. Then we have A E R(O) for 
some O. But  because A is translation invariant we also have 
A ~ R(O + x) for arbitrarily large space-like x, in contradiction to 
Postulate 2.6. 

From the spectrum condition Araki (1964) deduced 

Lemma 3.2 

Every element of the centre Q' FI Q" of Q" commutes with all 
translations U(x). 

From these lemmas follows 

Theorem 3.2 

The centre Q' Cl Q of the algebra Q of all local observables is trivial. 

Proof: Because Q c Q" we have 

Q ' N Q ~ Q ' A Q "  

Thus the elements of Q' FI Q are translation invariant (Lemma 3.2) 
and we therefore have Q' F1 Q = ()t. ! ) (Lemma 3.1). 

Together with Theorem 3.1, this amounts to 

Theorem 3.3 

The postulates 2.1-2.6 
observables is simple. 

imply that  the algebra ~) of quasilocal 

4. Property F 

A t taag field (H, Q, 0 --)- R(O)) is said to have the property F if for 
every bounded open domain O1 there exists a bounded open domain 
02 ~ O1 such that  R(02) is a factor. 

Theorem 4.1 (Misra, 1965) 

I f  a Haag field (H, Q, 0---> R(O)) has the property F,  then the 
algebra Q of all local observables and the algebra ~) of quasilocal 
observables are simple. 

Now we make use of the postulates 2.7-2.9 to give a simple proof 
that  the property F and thus the simplicity of ~) follows from the fact 
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that  the centre of Q is triviM. Borchers's proof is, however, more 
elegant, because it works without the additional postulates 2.7-2.9 
(Borchers, 1967). 

Lemma 4.1 

Let 0 be a bounded open domain such that  0 = 0". Then R(O) is a 
factor. 

Proof: We consider a monotone decreasing sequence of open regions 
Ti, for which 

lira T~= n T~= 0 U O' 
i-->oo i 

[This trick is due to Kraus (1964).] Because of continuous isotony 
(2.8) and primitive causality (2.9) we then have 

R(O U 0') = N R(O~) = Q" O O" " " n = Q" 
i 

or, making use of additivity (2.7) : 

O" = {R(O) U R(O')}" 

The commutant  of Q" is 

Q' = R(O)' n R(O')' 

But  because of locality (V) we have 

R(O')' ~ R(O) 
Thus 

Q' = R(O)' n R(O) 
and since Q ~ R(0):  

Q' n Q = R(O)' n R(O) 

Hence if R(O) is not a factor then the centre of Q is not trivial, in 
contradiction to Theorem 3.2. 

From Lemma 4.1 follows immediately that  the Haag field 
(H,  ~), 0 --> R(0)} has the property F.  
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Note Added in Proof  

T h e  p r e s e n t  f o r m  o f  p o s t u l a t e  2.8 is d u e  to  K .  K r a u s  ( p r i v a t e  
c o m m u n i c a t i o n ) .  I a m  i n d e b t e d  t o  Dr .  K r a n s  for  p o i n t i n g  o u t  a n  
i n a c c u r a c y  in  a f i r s t  f o r m  o f  t h i s  p o s t u l a t e .  


