On the Simplicity of Haag Fieldst

A. SCHOCH

Institut für theoretische Physik der Universität Bern, Bern, Switzerland

Abstract

It is shown that the simplicity of the C^* -algebra of quasilocal observables of a Haag field can be deduced from a postulate which seems to be plausible from a physical point of view.

1. Introduction

A Haag field (Misra, 1965) $\langle H, \overline{Q}, O \to R(O) \rangle$ is defined as follows: To every bounded open domain O in Minkowski space we associate a yon Neumann algebra (Dixmier, 1957) *R(O)* in a separable Hilbert space $H. R(0)$ is generated by the observables (of a given physical system) which can be measured in the domain O.

The algebras *R(O)* are called *algebras of local observables.* The union of all these algebras

$$
Q=\bigcup_0\,R(O)
$$

is a *-algebra, the *algebra of all local observables.* If we complete Q with respect to the norm topology we get the C^* -algebra \overline{Q} of *quasilocal observables.*

The structure $\langle H, \overline{Q}, Q \rangle$ is called a *Haag field.*

In a purely algebraic formulation of the quantum theory of fields (Haag & Kastler, 1964) the algebras *R(O)* are considered as abstract C^* -algebras instead of von Neumann algebras. From the mathematical point of view it is, however, advantageous to define these algebras as sets of operators acting in a Hilbert space.

Haag & Kastler (1964) have shown that two representations of the algebra \overline{Q} of quasilocal observables are physically equivalent (i.e. contain the same physical information) if they have the same kernel.

A stronger definition of physical equivalence was given by Misra (1965): Two representations $D_1(\overline{Q})$ and $D_2(\overline{Q})$ are physically equivalent in the sense of Misra if they are *-isomorphic and locally unitarily equivalent (i.e. $D_1[R(O)]$ and $D_2[R(O)]$ are unitarily equivalent for every bounded open domain \ddot{o}).

1" Work supported by the Swiss National Science Foundation.

Misra (1965) showed that all faithful representations of \overline{Q} are physically equivalent in this sense if the local algebras $R(0)$ are infinite, and it is well known that the algebras $R(0)$ are indeed of infinite type (Guenin & Misra, 1963; Kadison, 1963; Borchers, 1967).

Hence, if \overline{Q} is simple, all its non-trivial representations are physically equivalent in the sense of Haag and Kastler as well as in the sense of Misra. It is therefore interesting to know whether \overline{Q} is simple. Misra (1965) has shown that this is the case if the Haag field $\langle H, \bar{Q}, O \to R(O) \rangle$ has a certain property which he calls 'property F' . Borchers (1967) proved that \overline{Q} is simple if the centre of Q is trivial.

It is the purpose of this paper to show that the centre of Q is trivial and that, therefore, the C*-algebra \overline{Q} of quasilocal observables is simple, provided the Haag field $\langle H, \bar{Q}, O \rangle$ satisfies the following postulate which seems to be plausible from a physical point of view. This postulate, which we refer to as *extended locality,* states that if O_1 and O_2 are totally space-like to each other then the intersection of $R(O_1)$ and $R(O_2)$ is trivial.

In the last section we deduce the property F from the fact that the centre of Q is trivial. To do this we need, however, rather strong assumptions which are not needed in Borchers's proof (Borchers, 1967).

2. The Postulates

We denote by O a (bounded) open region in Minkowski space and by O' the region which is totally space-like relative to O .

If M is a set of (bounded) operators in a separable Hilbert space H , we denote by M' the commutant and by M'' the bicommutant of M . M'' is the von Neumann algebra generated by M .

Let $0 \rightarrow R(0)$ be a correspondence between open space-time domains 0 and the yon Neumann algebras *R(O)* of local observables. We state the following postulates :

2.1. Isotony

$$
O_1 \subset O_2 \Rightarrow R(O_1) \subset R(O_2)
$$

2.2. *Translation Covariance*

The Hilbert space H in which the algebras $R(0)$ are defined is the representation space of a unitary representation of the translation group :

$$
U(x) = \int \exp(i p x) dE(p)
$$

and we have

$$
U(x) R(O) U^{-1}(x) = R(O + x)
$$

2.3. *Spectrum Condition*

Let \overline{V}_+ be the closed forward cone and $E(\Delta)$ the spectral measure of the translation operator U for a set Δ in energy-momentum space. Then

$$
\varDelta\cap\,\overline{V}_+=\varPhi\Rightarrow E[\triangle]=0
$$

2.4. *Weak Additivity*

Let O be an arbitrary bounded open space-time domain. Then

$$
Q'' = \biggl\{ \bigcup_x R(O+x) \biggr\}''
$$

2.5. *Locality*

$$
O_1 \subset O_2' \Rightarrow R(O_1) \subset R(O_2)'
$$

2.6. *Extended Locality*

$$
O_1 \subset O_2' \Rightarrow R(O_1) \cap R(O_2) = \{\lambda, 1\}
$$
 (2.6.1)

If $(2.6.1)$ is not true then there exists an observable A which belongs simultaneously to $R(O_1)$ and to $R(O_2)$. If we measure A in O_1 we know at the same time its value in O_2 which contradicts physical intuition if the two regions are totally space-like to each other, \dagger

We remark that there is a connection between extended locality and strict locality: The former can be deduced from the latter. Strict locality is defined as follows (Licht, 1963; Kraus, 1964):

Let O_1 and O_2 be totally space-like to each other. Then for every non-trivial projector $P \in R(O_1)$ and for every vector $\phi \in H$ there exists a vector $\psi \in PH$ such that

$$
(\phi, A\phi) = (\psi, A\psi) [\forall A \in R(O_2)]
$$

Kraus (1964) deduced strict locality from some other postulates under the additional assumption that Q'' is a factor.

The postulates 2.1–2.6 are sufficient to show that \overline{Q} is simple. For our discussion of property F we need, however, some more assumptions.

A stronger form of weak additivity is

t The unit operator 1 plays a special role. Since by definition every yon Neumann algebra contains a unit element we cannot have the empty set on the right-hand side of (2.6.1). We can interpret the unit operator as follows: Since 1 is a projector it belongs to a yes-no experiment. This experiment answers the question: 'Does our physical system exist?' Of course, the existence of this system is the most fundamental of our assumptions.

 110 A. SCHOCH

2.7. *Additivity*

$$
R(O_1 \cup O_2) = \{R(O_1) \cup R(O_2)\}''
$$

This amounts to the statement that the observables which can be measured in $O_1 \cup O_2$ are those which can be measured in O_1 plus those which can be measured in O_2 , and no more.

Next we can write the postulate of isotony in the following way:

$$
O_1 \subset O_2 \Rightarrow R(O_1 \cap O_2) = R(O_1) \cap R(O_2)
$$

We sharpen this statement by requiring

2.8. *Continuous Isotony* (Kraus, 1964)

Let $O_1 \supset O_2 \supset \cdots \supset \emptyset$ de a monotone decreasing sequence of open sets in Minkowski space, and let \Box O_i have a non-empty open interior O with $\overline{O} \supset \bigcap_i O_i$ (\overline{O} is the closure of O). Then

$$
R(O) = \bigcap_i R(O_i)
$$

2.9. *Primitive Causality*

Let T be an open region in Minkowski space, containing a complete space-like hypersurface. Then

$$
Q''=\left\{\bigcup_{O\, \subset\, T}\, R(O)\right\}''
$$

Primitive causality says that measurements in a finite time interval are sufficient to determine the behaviour of a physical system for all times. This is always the ease if the system is described by a conventional field theory based on local fields satisfying hyperbolic equations of motion, because in this ease the boundary values on a space-like hypersurface are sufficient to determine the evaluation of the system.

3. The Centre of Q

From postulates 2.1-2.5 Borchers (1967) proved

Theorem 3.1

Let $J \subset \overline{Q}$ be a norm-closed two-sided ideal in \overline{Q} . Then

$$
J \neq \{0\} \Rightarrow J \cap Q \cap Q' \neq \{0\}
$$

We want to show now that the centre $Q \cap Q'$ of Q is trivial. To this aim we need

Lemma 3.1

The algebra Q of all local observables does not contain non-trivial translation invariant elements.

Proof: Let $A \in Q$ be translation invariant. Then we have $A \in R(O)$ for some O. But because A is translation invariant we also have $A \in R(0+x)$ for arbitrarily large space-like x, in contradiction to Postulate 2.6.

From the spectrum condition Araki (1964) deduced

Lemma 3.2

Every element of the centre $Q' \cap Q''$ of Q'' commutes with all translations $U(x)$.

From these lemmas follows

Theorem 3.2

The centre $Q' \cap Q$ of the algebra Q of all local observables is trivial.

Proof: Because $Q \subset Q''$ we have

$$
Q'\cap Q\subseteq Q'\cap Q''
$$

Thus the elements of $Q' \cap Q$ are translation invariant (Lemma 3.2) and we therefore have $Q' \cap Q = \{\lambda, 1\}$ (Lemma 3.1).

Together with Theorem 3.1, this amounts to

Theorem 3.3

The postulates 2.1–2.6 imply that the algebra \overline{Q} of quasilocal observables is simple.

4. Property F

A Haag field $\langle H, \bar{Q}, O \rangle \to R(O)$ is said to have the *property* F if for every bounded open domain O_1 there exists a bounded open domain $O_2 \supset O_1$ such that $R(O_2)$ is a factor.

Theorem 4.1 (Misra, 1965)

If a Haag field $\langle H, \overline{Q}, O \to R(O) \rangle$ has the property F, then the algebra Q of all local observables and the algebra \overline{Q} of quasilocal observables are simple.

Now we make use of the postulates 2.7-2.9 to give a simple proof that the property F and thus the simplicity of \bar{Q} follows from the fact

A. SCHOCH

that the centre of Q is trivial. Borchers's proof is, however, more elegant, because it works without the additional postulates 2.7-2.9 (Borchers, 1967).

Lemma 4.1

Let O be a bounded open domain such that $0 = 0$ ". Then $R(0)$ is a factor.

Proof: We consider a monotone decreasing sequence of open regions T_i , for which

[This trick is due to Kraus (1964).] Because of continuous isotony (2.8) and primitive causality (2.9) we then have

$$
R(O \cup O') = \bigcap_i R(O_i) = Q'' \cap Q'' \cdots \cap Q =''
$$

or, making use of additivity (2.7) :

$$
Q'' = \{R(O) \cup R(O')\}''
$$

The commutant of Q'' is

 $Q' = R(O)' \cap R(O')'$

But because of locality (V) we have

$$
R(O')' \supseteq R(O)
$$

Thus

$$
Q' \supseteq R(O)' \cap R(O)
$$

and since
$$
Q \supseteq R(O)
$$
:
\n $Q' \cap Q \supseteq R(O)' \cap R(O)$

Hence if $R(O)$ is not a factor then the centre of Q is not trivial, in contradiction to Theorem 3.2.

From Lemma 4.1 follows immediately that the Haag field $\langle H, \overline{Q}, O \to R(O) \rangle$ has the property F.

$References$

Araki, H. (1964). *Progress of Theoretical Physics,* 32, 844. Borchers, H. J. (1967). *Communications in Mathematical Physics,* 4, 315.

$$
^{112}
$$

Dixmier, J. (1967). *Les Algèbres D'opérateurs dans l'Espace Hilbertien*. Paris. Guenin, M. and Misra, B. (1963). *Nuovo Cimento, 30,* 1272. Haag, R. and Kastler, D. (1964). *Journal of Mathematical Physics,* 5, 848. Kadison, R. V. (1963). *Journal of Mathematical Physics*, 4, 1511. Kraus, K. (1964). Zeitschrift für Physik, 181, 1. Licht, A. L. (1963). *Journal of Mathematical Physics,* 4, 1443. Misra, B. (1965). *Helvetica physica acta,* 38, 189.

Acknowledgements

I am indebted to Prof. A. Mercier and Prof. H. Leutwyler for their encouraging interest in this work and for many valuable suggestions,

I also thank Dr. B. Misra for stimulating discussions and Prof. M. Guenin for useful comment.

Note Added in Proof

The present form of postulate 2.8 is due to K. Kraus (private communication). I am indebted to Dr. Krans for pointing out an inaccuracy in a first form of this postulate.